
MATH 254: Introduction to Linear Algebra
Chapter 0: Fundamental Definitions of Linear Algebra

This course contains ten fundamental definitions which will be tested repeatedly. Please memorize them, as
well as how to apply them to specific examples. The first three are simpler than the others.

1. A linear function/combination∗ is a function, in one or more variables, that is entirely
some mixture of addition and multiplication by constants, AND no constant is added by itself.

Examples: f(x, y) = 3x + 2y, g(a, b, c, d) = 2a− b + 0c + 3d, f(x, y) = 0x + 0y, 3z, 7z + 8w
Non-examples: f(x, y) = 3x + 2y + 2, f(x) = x2, f(x, y) = xy + y, f(x) = ex, sin x
Note: the “no constant is added by itself” condition is equivalent to f(0, 0, . . . , 0) = 0.

2. A linear equation is an equation setting a linear combination equal to any constant.
Examples: 3x + 2y = 2, 2a− b + 0c + 3d = 0, 3z = 12, x1 + x2 − x3 = −4, 0x + 0y = 3, 0x + 0y = 0
Non-examples: x2 = 2, xy + y = 7, x + sin(y) = 4, ex = 0

3. A linear equation/function/combination is called nondegenerate if it contains at least one vari-
able with a coefficient that is nonzero. It is degenerate if the coefficient of every variable is zero.

Nondegenerate: 3x + 2y = 2, 2a− b + 0c + 3d = 0, f(z) = 3z, g(x1, x2) = 7x1 + 0x2, 7x + 3y
Degenerate: 0x + 0y = 2, 0a + 0b + 0c + 0d = 0, f(x, y) = 0x + 0y, 0x− 2y, 0

4. A vector space is a collection of:
• objects, called vectors, and
• constants, called scalars. (for us, almost always the real numbers R)

These vectors and scalars must satisfy a variety of properties (to be studied later). The most important
property is closure: every linear combination of vectors, must again be a vector in the vector space.

One may USE closure as any linear combination (e.g. 5u + 7v − 8w is again a vector). To PROVE closure
is easier: one needs to prove only two specific types of linear combination, not all of them:

• For every vector v and every scalar a, av is a vector, “scalar multiplication”
• For every two vectors u, v their sum u + v is a vector. “vector addition”

Important Example 1: R2 is ordered pairs of real numbers (the vectors). For u = (1, 2), v = (−1,−1), we
have 2u + 3v = 2(1, 2) + 3(−1,−1) = (2, 4) + (−3,−3) = (−1, 1), which is again a vector.
Important Example 2: R3 is ordered triples of real numbers, such as (1, 2, 3).
Important Example 3: Rn is ordered lists of n real numbers.
Non-Example: Ordered pairs (a, b) where a > b are NOT a vector space; although closed under vector addi-
tion, they are not closed under scalar multiplication: −2(5, 4) = (−10,−8), which does not satisfy −10 > −8.

5. A linear mapping/transformation is a function, in one variable, from (the vectors of)
a vector space to another (possibly the same) vector space. This function f must satisfy two properties:

• For every vector v and every scalar a, f(av) = af(v), and
• For every two vectors u, v, f(u + v) = f(u) + f(v).

Examples: f(x) = 2x, rotation, stretching, matrix multiplication, differentiation
Non-examples: f(x) = sin(x), because sin(π/2 + π/2) = sin(π) = 0 6= 2 = sin(π/2) + sin(π/2).
f(x) = ex, because e0+0 = e0 = 1 6= 2 = e0+e0. f(x) = x+3, because (7+7)+3 = 17 6= 20 = (7+3)+(7+3).

∗The difference between “function” and “combination” is that a combination is a function with no specified name.



6. A subspace of a vector space is itself a vector space, contained within a bigger one. The vector space
properties are all inherited (for free) from the larger vector space, except for closure.

Important Example 1: The set of all linear combinations of any set of vectors. (the “span” of this set)
Important Example 2: The range of any linear mapping. (the “image” of this mapping)
Important Example 3: The set of vectors that a linear mapping sends to 0. (the “kernel” of this mapping)
Example 4: Consider the set S of all v = (v1, v2), where v1 + v2 = 0. This is a subset of R2. For any
scalar a and any vector v in S, av = a(v1, v2) = (av1, av2), and av1 + av2 = a(v1 + v2) = a(0) = 0, so
av is in S (first closure property). For any u, v in S, u + v = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2), and
u1 + v1 + u2 + v2 = (u1 + u2) + (v1 + v2) = 0 + 0 = 0, so u + v is in S (second closure property). Hence S is
a subspace.
Example 5: Consider the set T of all v = (v1, 0), another subset of R2. For any scalar a and any vector v in
T , av = a(v1, 0) = (av1, 0), which is in T (first closure property). For any u, v in T , u+v = (u1, 0)+(v1, 0) =
(u1 + v1, 0), which is in T (second closure property). Hence T is a subspace.
Non-example: Consider the set U of all v = (v1, 7), yet another subset of R2. This is not closed because
2v = (2v1, 14) is not in U . The first closure property fails for a = 2 (and so is not true for all a and all v).

7. A set of vectors is called dependent if there is a nondegenerate linear combination of those vectors
that yields the zero vector. Otherwise, the set of vectors is called independent – if EVERY nonde-
generate linear combination of that set yields a NONzero vector.

Dependent: x = (1, 1), y = (1, 2), z = (1, 3). The zero vector can be expressed with the nondegenerate
function f(x, y, z) = x− 2y + z = (1, 1)− 2(1, 2) + (1, 3) = (0, 0).
Independent: x = (1, 1), y = (0, 1). The function f(x, y) = 0x + 0y = (0, 0), but this is degenerate. Consider
any linear function f(x, y) = ax + by = a(1, 1) + b(0, 1) = (a, a + b). If this equals (0, 0), then a = b = 0.
Hence the zero vector cannot be expressed by a nondegenerate linear function on x, y.

8. A set of vectors is called spanning if every vector in the vector space can be expressed as a linear
combination of the elements of that set.

Example 1: {(1, 0), (0, 1)} spans R2. For every v in R2, v = (v1, v2) = v1(1, 0) + v2(0, 1).
Example 2: {(1, 0), (0, 1), (0, 4)} spans R2. For every v in R2, v = (v1, v2) = v1(1, 0) + v2(0, 1) + 0(0, 4).
Example 3: {(1, 1), (0, 1)} spans R2. For every v in R2, v = (v1, v2) = v1(1, 1) + (v2 − v1)(0, 1).
Non-example: {(1, 1)} does not span R2. The linear combinations of this set all have their two coordinates
equal, and so (2, 3), to pick just one example, cannot be expressed in this way.

9. A basis is a set of vectors that is both spanning and independent. Equivalently, it is a maximal set
of independent vectors (“maximally independent”). Equivalently, it is a minimal set of spanning vectors
(“minimally spanning”).

Important Example 1: The standard basis for Rn is {e1, e2, . . . , en}, where ei has a 1 in the ith position and
0 in every other position. e.g. R2 has basis {e1, e2} = {(1, 0), (0, 1)}.
Example 2: {(1, 1), (0, 1)} was shown above to be both independent and spanning. Thus it is a basis for R2.

10. The dimension of a vector space is the number of elements of a basis. It turns out that this number
is the same, no matter what basis you choose.

Important Example 1: Rn has dimension n.
Important Example 2: The set of all linear combinations of k linearly independent vectors has dimension k.
Example 3: Consider the set of all v = (v1, v2) where v1 +v2 = 0. This is a subspace, S, of R2. Its dimension
cannot be 2 (since it is not all of R2), nor 0 (since it contains nonzero vectors), hence must be 1. Consider
the set {(3,−3)}, drawn from S. It is independent (any single nonzero vector is independent by itself). It
must be maximal, since otherwise the dimension of S would not be 1. Thus {(3,−3)} is a basis for S.



Solved Problems

1. Carefully state the definition of “Linear Function”.

A linear function is a function that combines addition and multiplication by constants ONLY,
and no constant is added by itself.

2. Carefully state the definition of “Degenerate Function”.

A linear function is degenerate if it is always zero no matter what it is evaluated on.

3. Carefully state the definition of “Linear Transformation”.

A linear transformation is a one-variable vector function f that satisfies f(av) = af(v) and
f(u + v) = f(u) + f(v) (for every scalar a, and all vectors u, v).

4. Carefully state the definition of “Subspace”.

A subspace is a vector space that is contained within a larger vector space.

5. Carefully state the definition of “Basis”.

Solution 1: A basis is a set of vectors that is both spanning and independent.
Solution 2: A basis is a maximal set of independent vectors.
Solution 3: A basis is a minimal set of spanning vectors.

6. Determine which of the following equations is linear (justify your answers). Which are degenerate?
A: 0x + 3y = 2y − 7, B: 0x + 0y + 0z = 7, C: 3x + 0xy = 7y, D: x/y = 3

A: This equation is equivalent to 0x + 1y = −7 (or 1y = −7), a linear combination set equal
to a constant. Hence, it is linear. It is nondegenerate since the coefficient of y is 1.
B: This equation is a linear combination set equal to a constant. Hence, it is linear, but
degenerate. There are no (x, y, z) that satisfy this equation, incidentally.
C: The equation is equivalent to 3x−7y = 0, hence it is linear, and nondegenerate. (the 0xy
term does not ruin the linearity because of the 0).
D: The x/y term DOES ruin the linearity. Although it is possible to multiply both sides by
y to get x = 3y, a linear equation, the two equations are not equivalent. x = y = 0 satisfies
x = 3y, but does not satisfy x/y = 3, so the two equations are (subtly) different. Since it is
not linear, it is not meaningful to ask whether it is degenerate.

7. Consider the vector space R3, and set u = (−3, 2, 0), v = (0, 1, 4). Calculate 2v − u.

2v − u = 2(−3, 2, 0)− (0, 1, 4) = (−6, 4, 0) + (0,−1,−4) = (−6, 3,−4)

8. Consider the vector space R2 and the vector function f(x) = f((x1, x2)) = (2x2, x1). Determine
whether or not f is a linear transformation.

We calculate f(ax) = f((ax1, ax2)) = (2ax2, ax1) = a(2x2, x1) = af(x). Since a, x were
arbitrary, f(ax) = af(x) holds for every scalar a and every vector x. We now calculate
f(x+ y) = f((x1 + y1, x2 + y2)) = (2(x2 + y2), (x1 + y1)) = (2x2 +2y2, x1 + y1) = (2x2, x1)+
(2y2, y1) = f(x)+f(y). Since x, y were arbitrary, f(x+y) = f(x)+f(y) holds for all vectors
x, y. Hence f is a linear transformation.

9. Consider the vector space R2 and the vector function f(x) = f((x1, x2)) = (x1x2, 0). Determine
whether or not f is a linear transformation.

We calculate f(ax) = f((ax1, ax2)) = (ax1ax2, 0) = a2(x1x2, 0). This doesn’t look like
af(x), so let’s find a specific a, x as counterexample. For example, try a = 2, x = (1, 1).
f(ax) = f((2, 2)) = (4, 0), whereas af(x) = 2f((1, 1)) = 2(1, 0) = (2, 0). Hence f is NOT a
linear transformation.

10. Consider the set S of all v = (v1, v2) such that |v1| ≥ |v2|. This is a subset of R2. Is it a subspace?

For any scalar a and any vector v in S, we calculate av = a(v1, v2) = (av1, av2). Because
|v1| ≥ |v2|, we may multiply both sides by the nonnegative |a| to get |a||v1| ≥ |a||v2| and



hence |av1| ≥ |av2|. Hence av is a vector in S; the first closure property holds.
We now take two vectors u, v in S, and calculate u+v = (u1, u2)+(v1, v2) = (u1+v1, u2+v2).
Must |u1 + v1| ≥ |u2 + v2|? Not necessarily, so we need a specific counterexample. Many
are possible, for example u = (3, 1), v = (−3, 1). Both of u, v are in S, but u + v = (0, 2) is
not. Hence the second closure property does NOT hold. S is not a subspace, since to be a
subspace both closure properties must hold.

11. Consider the vector space R2 and the linear transformation f(x) = f((x1, x2)) = (2x2, x1). Consider
the set of vectors that f sends to 0 (the “kernel” of f). Find this set, and verify that it is a subspace.

If f(x) = 0, then (2x2, x1) = (0, 0) and hence 2x2 = 0, x1 = 0. Hence the kernel is just the
single vector (0, 0). This is indeed a subspace, since a(0, 0) = (0, 0) and (0, 0)+(0, 0) = (0, 0)
(hence it is closed).

12. Consider the vector space R2 and the linear transformation f(x) = f((x1, x2)) = (x1 +x2, 0). Consider
the set of vectors that f sends to 0 (the “kernel” of f). Find this set, and verify that it is a subspace.

If f(x) = 0, then (x1 + x2, 0) = (0, 0), and hence x1 + x2 = 0. Hence the kernel is all vectors
(x1, x2) such that x1+x2 = 0. To verify it is a subspace, we must verify closure. We calculate
ax = a(x1, x2) = (ax1, ax2). Since x1 + x2 = 0, we must also have ax1 + ax2 = 0. Hence
if x is in the kernel, ax is as well for every scalar a (first closure property). We calculate
x + y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2). Since x1 + x2 = 0 and y1 + y2 = 0, in fact
x1 +y1 +x2 +y2 = 0. Hence if x, y are in the kernel, x+y is a well (second closure property).
Since both closure properties hold, this is indeed a subspace.

13. Consider the vector space R2, and set u = (1, 1), v = (2, 3), w = (0, 5). Determine whether or not
{u, v, w} is dependent (justify your answer).

Solution 1: 10u− 5v + w = 10(1, 1)− 5(2, 3) + (0, 5) = (10, 10)− (10, 15) + (0, 5) = (0, 0), so
f(u, v, w) = 10u− 5v + w is a nondegenerate function on {u, v, w} that yields zerot. Hence,
{u, v, w} is dependent.
Solution 2: If {u, v, w} were independent, any basis of R2 would have at least three vectors.
However, R2 has dimension 2, so this is impossible. Therefore, {u, v, w} must be dependent.

14. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Determine whether or not {u, v} is
dependent (justify your answer).

Solution 1: Suppose that {u, v} were dependent. Then, there is some nondegenerate linear
function yielding the zero vector. That is, there are some constants a, b (not both zero)
so that au + bv = (0, 0). We calculate au + bv = a(2, 2) + b(3, 0) = (2a, 2a) + (3b, 0) =
(2a + 3b, 2a) = (0, 0). So, we must have 2a + 3b = 0 and 2a = 0. The second equation gives
us a = 0; we plug that into the first equation and get b = 0. Hence, a = b = 0 and the
linear function was actually degenerate. Therefore, there is no nondegenerate linear function
giving the zero vector, and therefore {u, v} is independent.
Solution 2: If {u, v} were dependent, the set of all linear combinations would be a subspace
of dimension 1. In this case, u would be a scalar multiple of v; but it is not since all scalar
multiples of v have a 0 in the second coordinate. WARNING: this type of solution ONLY
works for subspaces of dimension 1 – compare with the next problem.

15. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Determine whether or
not {u, v, w} is dependent (justify your answer).

Suppose that {u, v, w} were dependent. Then, there is some nondegenerate linear function
giving the zero vector as output. That is, there are some constants a, b, c (not all zero) so that
au+bv+cw = (0, 0, 0). We calculate au+bv+cw = (a, a, a)+(−b, 0, b)+(c, 2c, 3c) = (a−b+
c, a+2c, a+b+3c) = (0, 0, 0). Hence a−b+c = 0, a+2c = 0, a+b+3c = 0. Adding the first
and third equation gives 2a + 4c = 0, which is equivalent to the second equation. There are
thus infinitely many solutions, for example a = 2, c = −1, b = 1. We can double-check that



2u+v−w = 2(1, 1, 1)+1(−1, 0, 1)−1(1, 2, 3) = (2, 2, 2)+(−1, 0, 1)+(−1,−2,−3) = (0, 0, 0).
Hence this set is dependent.
NOTE: No one of u, v, w is a multiple of any one of the others. Although this was useful
in the one-dimensional case (see the previous problem), the linear combinations of this set
form a two-dimensional subspace and this approach is not helpful.

16. Consider the vector space R2, and set u = (2, 3). Determine whether or not {u} is spanning (justify
your answer).

Solution 1: For it to be spanning, every x = (x1, x2) could be expressed as a linear combi-
nation of u. Hence (x1, x2) = a(2, 3) = (2a, 3a). Hence a = x1/2 and also a = x2/3. Although
this might be possible for some x, it need not hold always. For example, x1 = x2 = 1 has
no possible a, so (1, 1) is not in the set of linear combinations of {u}. Hence this set is not
spanning.
Solution 2: Since R2 has dimension 2, any spanning set must have at least two elements.
Hence this set is not spanning.

17. Consider the vector space R2, and set u = (2, 2), v = (3, 0). Determine whether or not {u, v} is
spanning (justify your answer).

Solution 1: For it to be spanning, every x = (x1, x2) could be expressed as a linear combina-
tion of u, v. That is, there are scalars a, b with x = au+ bv = a(2, 2)+ b(3, 0) = (2a+3b, 2a).
If we set a = x2/2 and set b = (x1−x2)/3 (both real numbers no matter what x is), the above
holds. Hence this set is spanning.
Solution 2: By an earlier problem this set is independent. But the dimension of R2 = 2,
hence in fact this set is a basis. But then it is also spanning.

18. Consider the vector space R2, and set u = (2, 2), v = (3, 0), w = (7, 5). Determine whether or not
{u, v, w} is spanning (justify your answer).

Comparing with the previous problem, every x = (x1, x2) = au + bv, for a = x2/2 and
b = (x1−x2)/3. Hence x = au + bv + 0w, a linear combination of {u, v, w}, so this set is also
spanning.

19. Consider the vector space R3, and set u = (1, 1, 1), v = (−1, 0, 1), w = (1, 2, 3). Determine whether or
not {u, v, w} is spanning (justify your answer).

Solution 1: For this to be spanning, every x = (x1, x2, x3) would be some linear combination
of u, v, w. Hence there needs to be a, b, c with (x1, x2, x3) = a(1, 1, 1)+b(−1, 0, 1)+c(1, 2, 3) =
(a−b+c, a+2c, a+b+3c). This yields equations a−b+c = x1, a+2c = x2, a+b+3c = x3. Can
these always be solved, for every x1, x2, x3? This is actually rather tricky to answer (we will
learn more tools soon), but it turns out the answer is no. We need a specific counterexample
– many are possible, for example x1 = x2 = 1, x3 = 0. In this case, the three equations are
a−b+c = 1, a+2c = 1, a+b+3c = 0. Adding the first and third equations gives 2a+4c = 1,
which is inconsistent with the second equation. Hence x = (1, 1, 0) is not expressible as a
linear combination of {u, v, w}, and this set is not spanning.
Solution 2: The set {u, v, w} has three elements, and R3 has dimension 3. Hence if this set
were spanning, it would also be a basis and therefore independent. But an earlier problem
showed that this set is not independent, hence it cannot be spanning.

20. Find three different bases for R2.

Many solutions are possible. An easy choice is the standard basis {e1, e2} = {(1, 0), (0, 1)}.
An earlier problem showed that {(2, 2), (3, 0)} is another basis. An example given after the
definition of spanning showed that {(1, 1), (0, 1)} is spanning, and thus is a basis since it
contains two elements.



Supplementary Problems

Be sure to thoroughly justify all your solutions.

21. Carefully state the definition of “Linear Equation”.

22. Carefully state the definition of “Linear Combination”.

23. Carefully state the definition of “Spanning”.

24. Carefully state the definition of “Independent”.

25. Carefully state the definition of “Basis”.

26. For the vectors u = (1, 2, 3), v = (4, 0, 1), w = (−3,−2, 5), calculate 2u − 3v − 4w.

27. Determine which of the following functions is linear (justify your answers). A: f(x, y) = 7x−3y+2x+4y,
B: f(x, y) = 0x + 0y + 0, C: f(x, y) = 2x + 3y + 4, D: f(x, y, z) = (x/y)(y/z)z, E: f(x, y, z) = x

28. Consider the vector space R2 and the vector function f((x1, x2)) = (x2, 0). Is this a linear mapping?

29. Consider the vector space R2 and the vector function f((x1, x2)) = (x3
1, 0). Is this a linear mapping?

30. Consider the set S of all vectors v = (v1, v2) such that 2v1 + v2 = 0. Determine whether or not this is
a subspace of R2.

31. Consider the set S of all vectors v = (v1, v2) such that v1v2 = 0. Determine whether or not this is a
subspace of R2.

32. Consider the vector space R2 and the linear mapping f((x1, x2)) = (2x1 + x2, 0). Consider the set of
vectors that f sends to 0 (the “kernel” of f). Find this set, and verify that it is a subspace.

33. Consider the vector space R2, and set u = (2, 6), v = (−3,−9). Determine whether or not {u, v} is
independent.

34. Consider the vector space R2, and set u = (2, 6), v = (−3,−9), w = (5, 15). Determine whether or not
{u, v, w} is independent.

35. Consider the vector space R2, and set u = (2, 6), v = (0,−9). Determine whether or not {u, v} is
independent.

36. Consider the vector space R2, and set u = (2, 6), v = (−3,−9). Determine whether or not {u, v} is
spanning.

37. Consider the vector space R2, and set u = (2, 6), v = (−3,−9), w = (5, 15). Determine whether or not
{u, v, w} is spanning.

38. Consider the vector space R2, and set u = (2, 6), v = (0,−9). Determine whether or not {u, v} is
spanning.

39. Which of the sets given in problems 36-38 are bases of R2?

40. For the sets given in problems 36-38, determine the dimension of the subspace they span.

Answers to Supplementary Problems: (WARNING: these are just answers, NOT thoroughly justified solutions)
26: (2, 12,−17) 27: A,B,E 28: yes 29: no 30: yes 31: no 33: no 34: no 35: yes 36: no
37: no 38: yes 39: just 38 40: 1,1,2


